
Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

143

Graphical User Interfaces: Brownian Motion

11	� Graphical User Interfaces:
Brownian Motion

This chapter introduces the concept of active user interface components

•	 active components are implemented by a process
•	 they have channel interfaces
•	 an alternative can be used to determine which component is ready for interaction
•	 the user interface has a declarative style with little or no coding for the interactions
•	 the application demonstrates how animation can be achieved
•	 the use of any2one and one2any channels is explained and justified

Previously, a simple user interface (GConsole) has been used that enables easier interpretation of the
output from process networks. This chapter explores more complex user interfaces in conjunction with
a relatively simple graphical application based upon particle movement.

The JCSP package contains an active implementation of the Java AWT (Abstract Windows Toolkit). The
term active is here used to mean that each AWT component, for example, button, scrollbar and canvas,
has been wrapped in a process so that component events and configuration are undertaken by channel
communications. This means that the active components can be connected to any process. Furthermore,
the programmer does not have to write any event handling or listener methods as these are contained
within the active process wrapper. The active components inherit capabilities from the basic AWT
components, thus the methods and fields associated with the component can be reused and active and
ordinary, non-active, components can be used in the same interface.

The primary benefit of the active AWT components is that processes that access the user interface
can utilise their non-deterministic capabilities, thereby reflecting the unpredictable behaviour of user
interfaces. The user interface has no knowledge of when, for example, a button is going to be pressed
and thus either a channel communication or an alternative provides a simple method for capturing that
non-deterministic behaviour.

11.1	 Active AWT Widgets

The fundamental process diagram for an active widget is shown in Figure 11-1. A widget is any component
available in the java.awt package for which an active version has been constructed. Some active widgets
have been constructed that simplify the construction of user interfaces. Specific widgets may have more
or less channels depending upon the functionality of the widget.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

144

Graphical User Interfaces: Brownian Motion

All widgets have a configure input channel which enables the configuration of the widget at run-time.
In most cases the configuration of a new widget can be defined when it is constructed, unless of course
the content of the user interface is to be altered by changing the configuration of one of its widgets. For
example, when a button has its associated text changed to reflect the state of the user interface. Each
of the active component output channels produces data values that are related to the underlying AWT
specification of that event and is specified in the java.awt documentation. The role of the configuration
and event channels is specified in the org.jcsp.awt documentation and depends upon the specific
component. For example, if the event arises from the pressing of an ActiveButton then the message
communicated is the text string associated with the button. Similarly, a configuration channel message
could be a text string that is to replace the current text associated with the button.

Active

Widget
configure

event

widget event

focus event

key event

mouse event

mouse motion event

Figure 11-1 Generic Active Widget Process Diagram

11.2	 The Particle System – Brownian Motion

A particle motion system (Lea, 2003) comprises a number of particles that move around at random. Their
position is shown on a Canvas. Using Java threads and a Canvas results in a somewhat cumbersome
representation of the solution because a Canvas executes in its own thread of control, which has the
effect of distributing the particle control, random movement and the graphical representation throughout
the classes that make up the solution.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

145

Graphical User Interfaces: Brownian Motion

In the parallel solution that follows (see Figure 11-2) these drawbacks are eliminated and the fact that
a Canvas has to execute in its own thread of control is hidden from the programmer. Furthermore in
this solution we shall introduce some additional capabilities. The particles will bounce off the side of
the bounding Canvas. The user will be given control of the application with a button that allows them
to initially start the system and then subsequently to pause and resume its operation. In addition two
buttons are provided which modify the ‘temperature’ of the system. The higher the temperature the
greater the random movement exhibited by the particles. The particles do not bounce off each other
and that is left as an additional exercise for the interested reader.

A number of particles (Particle 0 to n) are connected to the ParticleInterface. This utilises
a new form of channel called any2one. An any2one channel enables the connection of any number
of writer processes to a single reader process. The point-to-point nature of channel communication is,
however, still maintained because only one communication can proceed at a time. Communications on
an any2one are such that communication from one writer to the single reader is completed before the
next writer can commence its communication. The converse is true of one2any channels. The JCSP
library also includes any2any channels where yet again once a communication has started it behaves
like a one-to-one communication.

www.mastersopenday.nl

Visit us and find out why we are the best!
Master’s Open Day: 22 February 2014

Join the best at
the Maastricht University
School of Business and
Economics!

Top master’s programmes
•	 �33rd place Financial Times worldwide ranking: MSc
International Business

•	 1st place: MSc International Business
•	 1st place: MSc Financial Economics
•	 2nd place: MSc Management of Learning
•	 2nd place: MSc Economics
•	 �2nd place: MSc Econometrics and Operations Research
•	 �2nd place: MSc Global Supply Chain Management and
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;
Financial Times Global Masters in Management ranking 2012

Maastricht
University is

the best specialist
university in the

Netherlands
(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

146

Graphical User Interfaces: Brownian Motion

Particles are not aware of their position relative to the sides of the bounding Canvas and thus
the particle may move to a position that is out with the bounding Canvas. In this case the particle’s
position is updated within the ParticleInterface. The updated position together with any change of
temperature is returned to the Particle using the update channel. The update channel is a one2any
channel that permits one writer to write to any number of readers. This is not a broadcast communication
because the writer can only write to one of the reader processes at any one time. Furthermore, once one
of the many reader processes has committed to a communication no other reader will be able to start a
communication until the writer has written to that reader process.

cc

connect

update

Particle 0 Particle n

ParticleManager

UserInterface

dList tempConfig uiEvent

…

pauseConfig

ParticleInterface

s

Figure 11-2 Brownian Motion Process Network

The ParticleManager is responsible for receiving inputs from the Particle processes; modifying
their position, should the indicated position lie outside the bounding canvas; and then causing the display
of the particle’s position on the canvas. The ParticleManager is also responsible for dealing with button
events from the UserInterface and configuring the buttons and labels within the UserInterface.
Data is passed between the Particle processes and the ParticleManager by means of a data object
that contains both positional information as well as any change to the temperature.

The UserInterface contains the display canvas, together with a button that is used to initially start
and then subsequently used to pause and restart the system. Two further buttons are provided that are
used to increase or decrease the temperature together with a Label that shows the current temperature
value with an indication of whether the last change was up or down. The channels used between the
ParticleManager and the UserInterface will be described more fully in a later section.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

147

Graphical User Interfaces: Brownian Motion

11.2.1	 The Position Data Object

The Position data object, see Listing 11-1, is used to communicate data between the Particles and the
ParticleInterface.

Position implements the interface JCSPCopy {10}, which is defined within the org.jcsp.groovy
package. It should be recalled that objects are passed between processes running on the same machine
by means of an object reference. In some situations this could lead to the creation of a large number of
newly created short-lived objects, which could lead to the calling of the automatic Java garbage collector.
The calling of the garbage collector during a graphical display would interfere with the presentation.
The abstract interface JCSPCopy defines a method called copy(), which can be used to generate a deep
copy of an object.

Lines {12–17} define the properties of Position. The property id is the number of the Particle. The
properties lx and ly are the newly calculated [x, y] position co-ordinates of the Particle. These co-
ordinates may lie outside the display area. The properties px and py are the co-ordinates of the previous
position of the particle. The property temperature maintains the current value of the temperature
within the system. All the properties, apart from id can be altered within the ParticleInterface.

10	class Position implements JCSPCopy {
11		
12	 def int id // particle number
13	 def int lx // current x location of particle
14	 def int ly // current y location of particle
15	 def int px // previous x location of particle
16	 def int py // previous y location of particle
17	 def int temperature // current working temperature
18	
19	 def copy() {
20	 def p = new Position (id: this.id,
21						 lx: this.lx, ly: this.ly,
22						 px: this.px, py: this.py,
23						 temperature : this.temperature)
24	 return p
25	 }
26
27	 def String toString () {
28	 def s = "[Position-> " + id + ", " + lx + ", " + ly
29	 s = s + ", " + px + ", " + py
30	 s = s + ", " + temperature + "]"
31	 return s
32	 }
33	}

Listing 11-1 The Position Data Object

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

148

Graphical User Interfaces: Brownian Motion

Lines {19–25} define the method copy required for the implementation of the interface JCSPCopy.
For completeness, a toString method is defined {27–32} that can be used to output the contents of a
Position object.

11.2.2	 The Particle Process

The definition of the Particle process is shown in Listing 11-2.

10	class Particle implements CSProcess {
11		
12	 def ChannelOutput sendPosition
13	 def ChannelInput getPosition
14	 def int x = 100 // initial x location
15	 def int y = 100 // initial y location
16	 def long delay = 200 // delay between movements
17	 def int id
18	 def int temperature = 25 // in range 10 to 50
19	
20	 void run() {
21	 def timer = new CSTimer()
22	 def rng = new Random()
23	 �def p = new Position (id: id, px: x, py: y, temperature: temperature)
24	 while (true) {
25	 p.lx = p.px + rng.nextInt(p.temperature) – (p.temperature / 2)

 -
©

 P
ho

to
no

ns
to

p

> Apply now

redefine your future

AxA globAl grAduAte
progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

149

Graphical User Interfaces: Brownian Motion

26	 p.ly = p.py + rng.nextInt(p.temperature) – (p.temperature / 2)
27	 sendPosition.write (p)
28	 p = ((Position)getPosition.read()).copy()
29	 timer.sleep (delay)
30	 }
31	 }
32	}

Listing 11-2 The Particle Process

A Particle has two channels one {12}, sendPosition, to output its Position to, and the other
{13}, getPosition, to receive updated Positions from the ParticleInterface. It should be noted
that even though these channels will eventually be implemented as any2one and one2any channels as
far as the process is concerned these are just a ChannelOutput and ChannelInput respectively. The
properties x {14} and y {15} hold the initial position of the particle. A default display area of 200 pixels
is presumed and thus all particles start their movement from the centre of that area. The position of
the particles will be recalculated after the interval specified by delay {16}, which is initially set to 200
milliseconds. Each Particle is given a unique identification id {17}. The initial temperature of the
system is set at 25 {18} and can range from 10 to 50.

The run method defines a CSTimer called timer {21} and uses the Java provided random number
generator mechanism, Random () {22}. The variable p holds the Position of the particle and is
constructed using the initial values held within the properties passed to the process {23}.

The main loop of the process {24-30} requires the calculation of the new position of the particle lx and ly
that are stored in the variable object p {25, 26}. The calculation ensures that the particle moves in a space
that surrounds the current location [px, py] by a square with a side of size temperature. The position
p is then written to the ParticleInterface {27}. This is a write operation that is implemented
on a shared any2one channel and thus the process will have to wait until any other outstanding
communications have completed. An any2one channel is essentially fair in that the communications
are placed in a queue of such communications.

The Particle process behaves like a client to the ParticleInterface’s server. As soon as it has
written its position to the ParticleInterface it reads the updated position information {28} from
the getPosition channel. The getPosition channel is implemented by means of a one2any channel
and thus this client – server interaction has to be carefully considered. When the sendPosition.
write(p) {27} communication is completed only this Particle process can be in that state because
only one communication is permitted on an any2one channel. Hence the only process that will be in
a position to undertake a read on the getPosition channel is this process. Hence we are assured
that a Particle process that writes it’s position to ParticleInterface will be the one to receive its
response, even though we are using shared any2one and one2any channels.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

150

Graphical User Interfaces: Brownian Motion

Finally, the Particle process sleeps for the delay period {29} after which the loop is repeated until the
user stops the application through the user interface. The user interface will cause the Particle processes
to stop even though they are implemented using a non-terminating while-loop.

11.2.3	 The Particle Interface Process

This process, shown in Listing 11-3 is typical of any application that uses a graphical user interface in
that it comprises a process that undertakes both the interaction with the user interface and the rest of
the system and the process that implements the user interface itself. These two processes are always run
in parallel using communication channels to pass events and configuration information between the
processes.

The channels inChannel {12} and outChannel {13} are used to connect this process to the Particle
processes. Yet again this process definition does not need to be aware of the specific implementation of
the channels actually used to connect the processes together. The property canvasSize {14} provides
a default size for the display area. Similarly, properties are defined for the number of particles {15},
the centre of the display area {16} and the intialtemp(erature) {17} of the system.

The variable dList {20} is of type DisplayList, defined within org.jcsp.awt. The use of dList
will be described later. It is sufficient to note, at this stage, that it is passed as a property to the
ParticleManager process {28}. An ActiveCanvas, particleCanvas is defined {21} and then a
call to its setPaintable() method is made that associates it with dList {22}. In this manner both
ParticleManager and UserInterface can access dList, the former directly as a property and
the other indirectly through particleCanvas {36}. Essentially, dList is a shared object between
the processes but the user can only modify the dList in ParticleManager directly. Therefore a
DisplayList object has to be defined before either of the processes that access it are defined. A
DisplayList is the mechanism by which animation can be more easily achieved.

10	class ParticleInterface implements CSProcess {
11		
12	 def ChannelInput inChannel
13	 def ChannelOutput outChannel
14	 def int canvasSize = 100
15	 def int particles
16	 def int centre
17	 def int initialTemp
18	
19	 void run() {
20	 def dList = new DisplayList()
21	 def particleCanvas = new ActiveCanvas()
22	 particleCanvas.setPaintable (dList)
23	 def tempConfig = Channel.one2one()

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

151

Graphical User Interfaces: Brownian Motion

24	 def pauseConfig = Channel.one2one()
25	 def uiEvents = Channel.any2one(new OverWriteOldestBuffer(5))
26	 def network = [new ParticleManager (fromParticles: inChannel,
27								 toParticles: outChannel,
28								 toUI: dList,
29								 fromUIButtons: uiEvents.in(),
30								 toUIPause: pauseConfig.out(),
31								 toUILabel: tempConfig.out(),
32								 CANVASSIZE: canvasSize,
33								 PARTICLES: particles,
34								 CENTRE: centre,
35								 START_TEMP: initialTemp),
36					 �new UserInterface (particleCanvas: particleCanvas,
37								 canvasSize: canvasSize,
38								 tempValueConfig: tempConfig.in(),
39								 �pauseButtonConfig: pauseConfig.in(),
40								 buttonEvent: uiEvents.out())
41]
42	 new PAR (network).run()
43	 }
44	}

Listing 11-3 The ParticleInterface Process

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

152

Graphical User Interfaces: Brownian Motion

The tempConfig channel {23} is used to update the temperature display in the interface. The pauseConfig
{24} channel is used to set the text in the START/PAUSE/RESTART button.

The uiEvents channel {25} passes button events from the UserInterface to the ParticleManager
process. It is not possible to press two buttons at the same time hence we can use an any2one
channel, which simplifies processing within the ParticleManager process. The parameter
OverWriteOldestBuffer (5) specifies that this channel will use a buffer of 5 elements in which,
should it become full the oldest element in the buffer will be overwritten. This buffer is required because
it is essential that events on this channel are always read otherwise the underlying Java event thread may
block, which would also have the effect of stopping the rest of the user interface. The specified buffer will
always read an input, hence ensuring that the Java event thread will not block and that another process
will always be able to read the last few events, five in this case, even if the reading process is slow.

The network {26–41} simply comprises the ParticleManager and UserInterface processes with
parameters and variables passed as parameters as required to construct the process network as shown
in Figure 11-2.

11.2.4	 The ParticleManager Process

The properties of the ParticleManager process are shown in Listing 11-4. The channel connections
with Particle processes are provided by the channels fromParticles {12} and toParticles {13}.
When the system is instantiated these will be passed shared channels of type any2one and one2any
respectively. The constant properties {15–18} respectively contain the size of the square display area
(CANVASSIZE), number of particles (PARTICLES), the centre co-ordinate of the display area (CENTRE)
and the initial value of the system temperature (START_TEMP). The DisplayList property {14}, toUI,
provides the graphical connection between the ParticleManager and UserInterface processes.
The ChannelInput {19}, fromUIButtons, is the channel by which button events from the user
interface are communicated to ParticleManager. Finally, the ChannelOutputs toUILabel {20}
and toUIPause {21} provide the means by which the temperature value and the START, PAUSE and
RESTART button have their values changed.

10	class ParticleManager implements CSProcess {
11		
12	 def ChannelInput fromParticles
13	 def ChannelOutput toParticles
14	 def DisplayList toUI
15	 def int CANVASSIZE
16	 def int PARTICLES
17	 def int CENTRE
18	 def int START_TEMP
19	 def ChannelInput fromUIButtons
20	 def ChannelOutput toUILabel
21	 def ChannelOutput toUIPause
22	

Listing 11-4 ParticleManager Properties

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

153

Graphical User Interfaces: Brownian Motion

The initialisation of the ParticleManager is shown in Listing 11-5. The variable colourList {24–26}
contains a list of java.awt.colors that is used to colour the particles once they start moving. The
variable temperature {28} is assigned the value of property START_TEMP.

The next part {30–46} initialises the variables that will be used by the DisplayList mechanism.
The variable, particleGraphics {30}, used to set() a DisplayList comprises an array of
GraphicsCommands. The initial element of particleGraphics {32} contains a GraphicsCommand
that clears the display area. The remainder of particleGraphics comprises two elements per particle.
The first element of which is a command to set the colour of the particle and the second will draw a circle
of that colour with a radius of 10 pixels at the position of the particle. However for initialisation, each
particle is set to the colour BLACK {36} and placed at the CENTRE {37} of the display area. This is captured
in the variable initialGraphic {34}. The nested for loops {39–44} copy the initialGraphic into
the array particleGraphics. Thus particleGraphics comprises a first command to clear the
display followed by as many pairs of GraphicsCommands as there are particles needing to be drawn.
The DisplayList, toUI is then set() to particleGraphics {46}. The manner in which the
DisplayList is manipulated will be described later.

The two element array positionGraphic {47–51} will subsequently be used to update the DisplayList
to reflect the movement of particles. It is initialised to sensible values that will be overwritten. However it
can be observed that the first element of the array contains a command to set the colour and the second
causes the drawing of a circle of that colour. The ParticleManager process alternates over inputs from
the user interface buttons, fromUIButtons and from the particles on channel fromParticles {53}.
The String initTemp is defined to hold the initial value of temperature {55} surrounded by spaces.
This String is then written to the label that displays this value using the channel toUILabel {56}.

23	 void run() {
24	 def colourList = [Color.BLUE, Color.GREEN,
25					 Color.RED, Color.MAGENTA,
26					 Color.CYAN, Color.YELLOW]
27
28	 def temperature = START_TEMP
29
30	 �GraphicsCommand[] particleGraphics = new GraphicsCommand[1+(PARTICLES*2)]
31	
32	 �particleGraphics[0] = new GraphicsCommand.ClearRect(0, 0,

CANVASSIZE,CANVASSIZE)
33
34	 GraphicsCommand [] initialGraphic = new GraphicsCommand [2]
35
36	 initialGraphic[0] = new GraphicsCommand.SetColor (Color.BLACK)
37	 �initialGraphic[1] = new GraphicsCommand.FillOval (CENTRE, CENTRE, 10, 10)
38	

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

154

Graphical User Interfaces: Brownian Motion

39	 for (i in 0 ..< PARTICLES) {
40	 def p = (i * 2) + 1
41	 for (j in 0 ..< 2) {
42	 particleGraphics [p+j] = initialGraphic[j]
43	 }
44	 }
45	
46	 toUI.set (particleGraphics)
47	 GraphicsCommand [] positionGraphic = new GraphicsCommand [2]
48	 positionGraphic =
49	 [new GraphicsCommand.SetColor (Color.WHITE),
50	 new GraphicsCommand.FillOval (CENTRE, CENTRE, 10, 10)
51]
52	
53	 def pmAlt = new ALT ([fromUIButtons, fromParticles])
54	
55	 def initTemp = " " + temperature + " "
56	 toUILabel.write (initTemp)
57	
58	 def direction = fromUIButtons.read()
59	 while (direction != "START") {
60	 direction = fromUIButtons.read()
61	 }
62	 toUIPause.write("PAUSE")
63	

Listing 11-5 ParticleManager Initialisation

The variable direction is read from the channel fromUIButtons {58}. A user interface button signals
a button event by communicating the String that is currently displayed by the button. Recall that all
the user interface buttons are connected to the same channel, fromUIButtons. Only the START/PAUSE/
RESTART button has the initial value START and thus the process will wait until the button labelled
START is pressed. This behaviour is captured in the while loop {59–61}, which ignores any other button
events. Once START has been read, the button’s text value is changed to PAUSE {62} by writing to the
toUIPause channel. The operation of the system now commences and this is shown in Listing 11-6.

The index of the selected alternative is obtained, with priority being given to button events {65}. If the
value read from the channel fromUIButtons is PAUSE {68} then it is immediately overwritten with
RESTART {69}. The process then waits for the button event RESTART ignoring all other button events
{71–73}. Once the system has been restarted the button is overwritten with the value PAUSE {74}.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

155

Graphical User Interfaces: Brownian Motion

64	 while (true) {
65	 def index = pmAlt.priSelect()
66	 if (index == 0) { // dealing with a button event
67	 direction = fromUIButtons.read()
68	 if (direction == "PAUSE") {
69	 toUIPause.write("RESTART")
70	 direction = fromUIButtons.read()
71	 while (direction != "RESTART") {
72		 direction = fromUIButtons.read()
73	 }
74	 toUIPause.write("PAUSE")
75	 }
76	 else {
77	 if ((direction == "Up") && (temperature < 50)) {
78			 temperature = temperature + 5
79			 def s = "+" + temperature + "+"
80			 toUILabel.write (s)
81	 }
82	 else {
83		 if ((direction == "Down") && (temperature > 10)) {
84			 temperature = temperature – 5
85			 def s = "-" + temperature + "-"
86			 toUILabel.write (s)

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

156

Graphical User Interfaces: Brownian Motion

87		 }
88		 else {
89		 }
90	 }
91	 }
92	 }

Listing 11-6 ParticleManager Button Event Processing

If the value read into direction is not PAUSE then it must either be Up or Down which are the text strings
associated with the buttons that manipulate the temperature of the system. If the Up button is pressed
and provided the current value of temperature is less than 50 {70} then the temperature is raised
by 5 {78} and the new value of temperature is written to the interface using the channel toUILabel
surrounded by + symbols {79–80}. Similarly if the Down button is pressed then the temperature is
reduced by 5 provided its current value is greater than 10 and is output surrounded by – symbols {83–89}.

Listing 11-7 shows the processing that deals with the movement of particles.

93	 else { // index is 1 particle movement
94	 def p = (Position) fromParticles.read()
95	 if (p.lx > CANVASSIZE) { p.lx = (2 * CANVASSIZE) – p.lx }
96	 if (p.ly > CANVASSIZE) { p.ly = (2 * CANVASSIZE) – p.ly }
97	 if (p.lx < 0) { p.lx = 0 – p.lx }
98	 if (p.ly < 0) { p.ly = 0 – p.ly }
99	 �positionGraphic [0] = new GraphicsCommand.SetColor(colourList.

getAt(p.id%6))
100	 �positionGraphic [1] = new GraphicsCommand.FillOval (p.lx, p.ly, 10, 10)
101	 toUI.change (positionGraphic, 1 + (p.id * 2))
102	 p.px = p.lx
103	 p.py = p.ly
104	 p.temperature = temperature
105	 toParticles.write(p)
106	 } // index test
107	 } // while
108	 } // run
109	}

Listing 11-7 ParticleManager Particle Movement Processing

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

157

Graphical User Interfaces: Brownian Motion

Recall that ParticleManager is behaving as a server process. Hence we would expect to see it read a client
request {94}, undertake some processing and then respond with the return value {105}. The Position
data object is read into the variable p from the channel fromParticles {94}. The proposed location
[lx, ly] of the particle is then assessed as to whether it still remains within the display area {95–98}
and if not, its position is adjusted assuming that the reflection from the side of the display area involves
no friction or elastic compression of the particle. The value of the PositionGraphic array is then
modified to reflect the particle’s colour by taking the modulus 6 remainder of the particle’s id {99} and
then setting the centre of the circle to [lx, ly] {100}. This is then used to overwrite the data for this
particle in the DisplayList parameter using the toUI.change() method {101}.

The position of the particle can now be updated {102, 103}. The current value of temperature is assigned
to the corresponding property of object p {104} and the updated object p is then written back to the
waiting Particle process {105}, as described in Section 11.2.2.

The description of the operation of a DisplayList can now be completed. An ActiveCanvas takes the
DisplayList object as a parameter. Internally, the ActiveCanvas constructs two copies of the associated
DisplayList array of Graphics commands. These copies are used to provide a double buffering mechanism;
this however is hidden from the programmer. At a specified period the ActiveCanvas draws the current
buffer on the display, while other changes are recorded in the other copy. This mechanism is repeated
displaying the first buffer and recording changes in the second and then displaying the second buffer
while recording changes in the first copy.

The DisplayList is initialised by a set method {46}. Thereafter specific elements of the DisplayList
can be altered using the change method {101}. Thus the programmer generates the effect of continually
updating the display, which in fact is using a double buffering technique to smooth the repainting of
the display. The user is not concerned with the repainting of the display as this handled within the
ActiveCanvas process. Thus the DisplayList array of GrahicsCommands has an initial element
that clears the display area, which is then overwritten by the sequence of GraphicsCommands in
the array. In this manner sophisticated animation can be achieved, without having to overwrite each
particle individually.

11.2.5	 The UserInterface Process

The UserInterface process is shown in Listing 11-8. The properties of the process include the
particleCanvas, fromPM {12}, the size of the canvas {13}, the two input channels, tempValueConfig
{14} and pauseButtonConfig {15} used to configure the temperature value and the start button. Finally,
the buttonEvent channel is used to output button events to the ParticleManager process {16}.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

158

Graphical User Interfaces: Brownian Motion

The run method of this process comprises a declarative style list of definitions and associated method calls
that instantiates the graphical user interface. First, root {19}, an ActiveClosingFrame is defined that
will be used to hold the rest of the interface components. An ActiveClosiongFrame is defined with the
frame’s title as a parameter and is not introduced by a property name because these processes are defined
as Java classes and thus are constructed using the normal Java mechanism. ActiveClosingFrame is
a specialisation of ActiveFrame that permits the closing of the frame using the normal window based
controls. Interface components have to be added to the enclosed frame which is accessed by means of
the getActiveFrameMethod() call {20}. The next part of the Listing shows the definition of the
interface widgets both active and ordinary AWT non-active ones which can be mixed as required. The
Label, tempLabel, which displays the text ‘Temperature’ is constructed {21}. An ActiveLabel
called tempValue is then defined {22} with the channel tempValueConfig as its parameter. Typically,
an active widget has a constructor that comprises the configuration and event channels, together with
any other appropriate parameter. The alignment of the label is also specified {23}. After this the required
ActiveButtons are defined {24–26}, in which the null parameter is a placeholder for the not needed
configuration channel. The additional parameter specifies the initial text associated with the button. The
pauseButton requires a configuration channel {26} because the value of the text String associated
with the button changes as the application progresses.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

159

Graphical User Interfaces: Brownian Motion

10	class UserInterface implements CSProcess {
11		
12	 def ActiveCanvas particleCanvas
13	 def int canvasSize
14	 def ChannelInput tempValueConfig
15	 def ChannelInput pauseButtonConfig
16	 def ChannelOutput buttonEvent
17	
18	 void run() {
19	 �def root = new ActiveClosingFrame ("Brownian Motion Particle System")
20	 def mainFrame = root.getActiveFrame()
21	 def tempLabel = new Label ("Temperature")
22	 def tempValue = new ActiveLabel (tempValueConfig)
23	 tempValue.setAlignment(Label.CENTER)
24	 def upButton = new ActiveButton (null, buttonEvent, "Up")
25	 def downButton = new ActiveButton (null, buttonEvent, "Down")
26	 �def pauseButton = new ActiveButton(pauseButtonConfig, buttonEvent, "START")
27	 def tempContainer = new Container()
28	 tempContainer.setLayout (new GridLayout (1, 5))
29	 tempContainer.add (pauseButton)
30	 tempContainer.add (tempLabel)
31	 tempContainer.add (upButton)
32	 tempContainer.add (tempValue)
33	 tempContainer.add (downButton)
34	 particleCanvas.setSize (canvasSize, canvasSize)
35	 mainFrame.setLayout(new BorderLayout())
36	 mainFrame.add (particleCanvas, BorderLayout.CENTER)
37	 mainFrame.add (tempContainer, BorderLayout.SOUTH)
38	 mainFrame.pack()
39	 mainFrame.setVisible (true)
40	 �def network = [root, particleCanvas, tempValue, upButton,

downButton, pauseButton]
41	 new PAR (network).run()
42	 }
43	}

Listing 11-8 The User Interface Process

Next a Container, tempContainer is defined {27} that holds all the components associated with the
manipulation of temperature together with the pauseButton. The Container uses a GridLayout
{28}. The previously defined buttons and labels are then added to the tempContainer {29–33}. The
size of particleCanvas is specified {34}.

The mainframe can now be created {35–39} by specifying it to be a BorderLayout {35}. The
particleCanvas and tempContainer are then added to the mainframe in the CENTER and SOUTH of
the layout {36, 37}. The mainframe is then packed and setVisible {38, 39}, in the manner normally
required by AWT interfaces.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

160

Graphical User Interfaces: Brownian Motion

Finally, a process network is constructed that comprises the root and the remaining active widgets {40}.
The network is then run {41} and that is all that needs to be specified for the user interface requirements
of this application. The event handler and listener methods normally required do not have to be written
as these have been encapsulated within the active widgets, thereby simplifying the construction of the
user interface.

11.2.6	 Invoking the Brownian Motion System

Listing 11-9 gives the script that is required to invoke the Brownian motion system. The any2one
channel connect and the one2any channel update are defined {10, 11}. The fundamental constants
of the system are either obtained from a user interaction or defined as constants {13-16}. The empty
List network is defined {18} to which is appended each of the Particle processes {20–26}. The
ParticleInterface process is finally appended to network {28–33}. The system is then executed
by running PAR {35}.

10	def connect = Channel.any2one()
11	def update = Channel.one2any()
12
13	def CSIZE = Ask.Int ("Size of Canvas (200, 600)?: ", 200, 600)
14	def CENTRE = CSIZE / 2
15	def PARTICLES = Ask.Int ("Number of Particles (10, 200)?: ", 10, 200)
16	def INIT_TEMP = 20
17
18	def network = []
19	for (i in 0..< PARTICLES) {
20	 network << new Particle (id: i,
21						 sendPosition: connect.out(),
22						 getPosition: update.in(),
23						 x: CENTRE,
24						 y: CENTRE,
25						 temperature: INIT_TEMP)
26	}
27
28	network << (new ParticleInterface (inChannel: connect.in(),
29							 outChannel: update.out(),
30							 canvasSize: CSIZE,
31							 particles: PARTICLES,
32							 centre: CENTRE,
33							 initialTemp: INIT_TEMP))
34	println "Starting Particle System"
35	new PAR (network).run()

Listing 11-9 The Script To Invoke the Brownian Motion System

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

161

Graphical User Interfaces: Brownian Motion

A typical screen capture of the system, when it has been PAUSEd is shown in Output 11-1. We can observe
that the control button has been set to RESTART. The temperature is currently set at 40 and the last operation
was to increase its value because it is surrounded by + symbols. The Up and Down buttons are clearly visible.
The screen is derived from a system that has a canvas size of 450 pixels running 100 particles.

Output 11-1 Screen Capture of the Brownian Motion System

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

162

Graphical User Interfaces: Brownian Motion

11.3	 Summary

This chapter has described how user interfaces can be constructed very simply using the active widget
concept. Of most significance is the relative simplicity of the user interface definition as it does not require
the programmer to implement the event and listener methods normally required. It has introduced a
standard design pattern for user interface applications in which there is a process that undertakes the
processing ParticleManager and its associated UserInterface process that are executed in parallel.

The concept of a DisplayList has been introduced which simplifies the programming of animated
user interfaces based upon drawing in an ActiveCanvas. This in itself typifies the ease with which
user interfaces can be constructed using active widgets because the programmer can use the parallel
programming constructs to implement the interaction between user and application processes.

The design and implementation of user interfaces has become a much easier task because the user is no
longer concerned with the writing of event handler and listener methods. Furthermore, the encapsulation
of interface components, which run in their own thread and their associated event handler thread into
a single process, makes it much easier to build the system that interacts with the interface.

11.4	 Exercises

Exercise 111

The Control process in the Scaling system (Chapter 5) currently updates the scaling factor according to
an automatic system. Replace this with a user interface that issues the suspend communication, obtains
the current scaling factor and then asks the user for the new scaling factor that is then injected into the
Scaler. The original and scaled values should also be output to the user interface. There is a widget
called ActiveTextEnterField that may be useful (see the JCSP documentation).

http://bookboon.com/

